skip to main content


Search for: All records

Creators/Authors contains: "Oh, Sang-Hyun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We hereby propose and theoretically investigate a new scheme for simultaneous generation and manipulation of terahertz (THz) waves through difference frequency generation facilitated by a metasurface-assisted nonlinear leaky waveguide antenna. The proposed structure integrates a nonlinear optical waveguide, composed of multiple AlxGa1−xAs layers, with a THz leaky waveguide, wherein a bianisotropic metasurface realizes the radiating aperture. By explicitly utilizing the electric, magnetic, and magnetoelectric coupling responses of the metasurface, we demonstrate that the generated THz wave can be induced as a tightly confined, phase-matched guided mode for efficient generation of the THz wave. Additionally, this approach allows the THz wave to be transformed into a directive beam, radiating at a user-defined leakage rate and direction. Our numerical analyses suggest that THz beams ranging from 2.85 THz to 3.05 THz can be steered from 4to 40, utilizing the inherent beam-steering capabilities of the leaky-waveguide antenna. Within this THz frequency spectrum, the phase matching condition is achieved by adjusting the optical wavelengths between 1.6μmand 1.52μm. In particular, the nonlinear conversion efficiency is 2.9 × 10−5[1/W] at 3 THz.

     
    more » « less
  2. Abstract

    Anisotropic planar polaritons - hybrid electromagnetic modes mediated by phonons, plasmons, or excitons - in biaxial two-dimensional (2D) van der Waals crystals have attracted significant attention due to their fundamental physics and potential nanophotonic applications. In this Perspective, we review the properties of planar hyperbolic polaritons and the variety of methods that can be used to experimentally tune them. We argue that such natural, planar hyperbolic media should be fairly common in biaxial and uniaxial 2D and 1D van der Waals crystals, and identify the untapped opportunities they could enable for functional (i.e. ferromagnetic, ferroelectric, and piezoelectric) polaritons. Lastly, we provide our perspectives on the technological applications of such planar hyperbolic polaritons.

     
    more » « less
  3. Free, publicly-accessible full text available June 1, 2024
  4. Abstract Diagnostic tools for the detection of protein-misfolding diseases (i.e., proteopathies) are limited. Gold nanoparticles (AuNPs) facilitate sensitive diagnostic techniques via visual color change for the identification of a variety of targets. In parallel, recently developed quaking-induced conversion (QuIC) assays leverage protein-amplification and fluorescent signaling for the accurate detection of misfolded proteins. Here, we combine AuNP and QuIC technologies for the visual detection of amplified misfolded prion proteins from tissues of wild white-tailed deer infected with chronic wasting disease (CWD), a prion disease of cervids. Our newly developed assay, MN-QuIC, enables both naked-eye and light-absorbance measurements for detection of misfolded prions. MN-QuIC leverages basic laboratory equipment that is cost-effective and portable, thus facilitating real-time prion diagnostics across a variety of settings. In addition to laboratory-based tests, we deployed to a rural field-station in southeastern Minnesota and tested for CWD on site. We successfully demonstrated that MN-QuIC is functional in a non-traditional laboratory setting by performing a blinded analysis in the field and correctly identifying all CWD positive and CWD not-detected deer at the field site in 24 h, thus documenting the portability of the assay. White-tailed deer tissues used to validate MN-QuIC included medial retropharyngeal lymph nodes, parotid lymph nodes, and palatine tonsils. Importantly, all of the white-tailed deer (n = 63) were independently tested using ELISA, IHC, and/or RT-QuIC technologies and results secured with MN-QuIC were 95.7% and 100% consistent with these tests for positive and non-detected animals, respectively. We hypothesize that electrostatic forces help govern the AuNP/prion interactions and conclude that MN-QuIC has great potential for sensitive, field-deployable diagnostics for CWD, with future potential diagnostic applications for a variety of proteopathies. 
    more » « less
  5. Abstract

    Open-channel microfluidics enables precise positioning and confinement of liquid volume to interface with tightly integrated optics, sensors, and circuit elements. Active actuation via electric fields can offer a reduced footprint compared to passive microfluidic ensembles and removes the burden of intricate mechanical assembly of enclosed systems. Typical systems actuate via manipulating surface wettability (i.e., electrowetting), which can render low-voltage but forfeits open-microchannel confinement. The dielectric polarization force is an alternative which can generate open liquid microchannels (sub-100 µm) but requires large operating voltages (50–200 VRMS) and low conductivity solutions. Here we show actuation of microchannels as narrow as 1 µm using voltages as low as 0.5 VRMSfor both deionized water and physiological buffer. This was achieved using resonant, nanoscale focusing of radio frequency power and an electrode geometry designed to abate surface tension. We demonstrate practical fluidic applications including open mixing, lateral-flow protein labeling, filtration, and viral transport for infrared biosensing—known to suffer strong absorption losses from enclosed channel material and water. This tube-free system is coupled with resonant wireless power transfer to remove all obstructing hardware — ideal for high-numerical-aperture microscopy. Wireless, smartphone-driven fluidics is presented to fully showcase the practical application of this technology.

     
    more » « less
  6. Graphene is now a crucial component of many device designs in electronics and optics. Just like the noble metals, this single layer of carbon atoms in a honeycomb lattice can support surface plasmons, which are central to several sensing technologies in the mid-infrared regime. As with classical metal plasmons, periodic corrugations in the graphene sheet itself can be used to launch these surface waves; however, as graphene plasmons are tightly confined, the role of unwanted surface roughness, even at a nanometer scale, cannot be ignored. In this work, we revisit our previous numerical experiments on metal plasmons launched by vanishingly small grating structures, with the addition of graphene to the structure. These simulations are conducted with a recently devised, rapid, and robust high-order spectral scheme of the authors, and with it we carefully demonstrate how the plasmonic response of a perfectly flat sheet of graphene can be significantly altered with even a tiny corrugation (on the order of merely 5 nm). With these results, we demonstrate the primary importance of fabrication techniques that produce interfaces whose deviations from flat are on the order of angstroms.

     
    more » « less
  7. null (Ed.)
    Abstract We derive the formulas for the resonance frequencies and their sensitivity when the nano-slit structures are used in the detection of thin layers. For a thin layer with a thickness of $H$ deposited over the nanostructure, we show quantitatively that for both single and periodic slit structures with slit aperture size $\delta $, the sensitivity of resonance frequency reduces as $H$ increases. Specifically, the sensitivity is of order $O(\delta /H)$ if $H>\delta $ and of order $O(1+\ln H/\delta )$ otherwise. The evanescent wave modes are present along the interface between the thin dielectric film and ambient medium above. From the mathematical derivations, it is observed that the sensitivity of the resonance frequency highly depends on the effect of evanescent wave modes on the tiny slit apertures. 
    more » « less
  8. Abstract

    Low-dimensional van der Waals (vdW) materials can harness tightly confined polaritonic waves to deliver unique advantages for nanophotonic biosensing. The reduced dimensionality of vdW materials, as in the case of two-dimensional graphene, can greatly enhance plasmonic field confinement, boosting sensitivity and efficiency compared to conventional nanophotonic devices that rely on surface plasmon resonance in metallic films. Furthermore, the reduction of dielectric screening in vdW materials enables electrostatic tunability of different polariton modes, including plasmons, excitons, and phonons. One-dimensional vdW materials, particularly single-walled carbon nanotubes, possess unique form factors with confined excitons to enable single-molecule detection as well as in vivo biosensing. We discuss basic sensing principles based on vdW materials, followed by technological challenges such as surface chemistry, integration, and toxicity. Finally, we highlight progress in harnessing vdW materials to demonstrate new sensing functionalities that are difficult to perform with conventional metal/dielectric sensors.

     
    more » « less
  9. null (Ed.)